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Coherency strain effects on TEM images of 
composite precipitates in AI-Li-Zr alloys 
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Turkey 

Anomalous superlattice dark-field images of composite precipitates consisting of a dark core 
surrounded by a bright shell in AI-2.52Li-0.15Zr alloys, has been investigated by many beam 
dynamical image simulations employing a scattering matrix approach. The coherency strain 
field in the shell of the precipitate, as well as in the matrix, has been calculated by use of 
relations derived, and these are incorporated into the image calculations to determine 
whether the unexpected images can be elucidated by the coherency strain field of the 
precipitates. It has been found that the coherency strain field may modify the observed 
composite precipitate images, but it definitely cannot be the origin of the observed anomaly 
in these images. It has been also shown bythe image matching technique, that the mismatch 
between the 13' (AI3Zr) precipitates and aluminium matrix in AI-Li-Zr alloys should have 
a value of about 0.3%. 

1. Introduct ion 
The transmission electron microscope (TEM) images 
of composite precipitates formed by epitaxial nuclea- 
tion of 6' (A13Li) phase on the already existing 
13' (A13Zr) particles [1,2] to form a uniform shell 
around them is an interesting feature of zirconium- 
containing A1-Li alloys. Both A13Zr and A13Li phases 
have ordered L12 crystal structure and their lattice 
parameters are very close to each other. Because, in 
addition, both phases have cube-cube orientation re- 
lationship with the aluminium matrix, their individual 
electron diffraction patterns coincide. Therefore, dark- 
field images of composite precipitates taken from any 
superlattice reflection, which is common to both 
phases, are ordinarily expected to be completely 
bright. However, the superlattice dark-field TEM im- 
ages of these precipitates are composed of a dark core 
surrounded by a bright shell. In previous studies, lack 
of contrast from the [3' particles constituting the core 
of the composite precipitates has been attributed to 
(i) decay in the structure factor upon substitution of 
zirconium atoms by lithium in the [3' phase [3, 4], 
(ii) coherency strains causing variable projected po- 
tentials for different columns across the composite 
precipitate [5-], (iii) inelastic scattering phenomena 
[6], (iv) cored structure of the composite precipitates 
[7], and (v) slight tilt of the [3' phase from the exact 
cube-cube orientation relationship [8]. Among the 
above predictions, only the first two seem to be worth 
considering, because the others can be readily nullified 
by diffraction and imaging studies. The proposal of 
Gayle and Vandersande [3,4] that lithium atoms 
may be substituted in the 13' phase has been sup- 
ported by kinematical image calculations, but still 
number of questions can be raised on the validity of 

their prediction if the kinetics of precipitation is taken 
into account. The strain effect mentioned by Makin et 
al. [5] may be of importance, but has not yet been 
subject to any quantitative analysis. 

In the present study, the origin of the dark core 
image of composite precipitates has been investigated 
by dynamical image simulation technique, to deter- 
mine whether this unexpected image can be elucidated 
by the coherency strain field of these precipitates. 

2. Image simulation technique 
The superlattice dark-field images of composite pre- 
cipitates in A1-Li-Zr alloys have been computed by 
using the scattering matrix method of many beam 
dynamical theories of electron diffraction [9]. In the 
case of two beams, n = 2, if (~o(0) and qbg(0) are the 
amplitudes of the transmitted and diffracted beams 
entering a perfect crystal of thickness, z, then the 
amplitudes of the outgoing waves, ~o(Z) and ~g(z), can 
be represented as 

(1) 

where S is the scattering matrix equal to 

s = c { e  2~i,'''z } c  -~ (2) 

where { } represents the diagonal matrix whose ele- 
ments are all zero except for the diagonal. The ele- 
ments of the matrix C originates from the amplitudes 
of the Bloch waves and can be found by solving the 
eigen equation [10] 

A C -  V C = 0 (3) 
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where A is an n x n complex matrix, and contains the 
information on the periodic potential in its off-diag- 
onal and crystal orientation in its diagonal elements 
ElO, 113 

i 
A0o - (4a) 

2{; 

i 
Agg = s + 2{-~o (4b) 

1 i 
Agg,- - -  + (4c) 

2{g-g' 2~'g_ g, 

where i is the complex number, ~g is the extinction 
distance, ~'g and ~{~ are the anomalous and normal 
absorption distances and s is the deviation para- 
meter. Once the elements of matrix A have been deter- 
mined, Equation 3 has to be solved to find the eigen 
vectors C, and the eigen values 7 to construct the 
scattering matrix belonging to the given perfect crystal 
of thickness z. The amplitudes of the beams leaving the 
crystal can be calculated from Equation 1 and the 
intensities of the beams by squaring the amplitude, 
I o c ~ * .  

When there is a planar defect, such as a stacking 
fault, dividing the perfect crystal into two slabs with 
a relative displacement R between them, the problem 
can be solved by introducing a matrix F, which repres- 
ents the phase shift in the beams by an amount ~ due 
to the displacement R. In case of two beams, 

and orientation are constant, Sk are the same for all 
slabs, resulting in considerable economy in the calcu- 
lation scheme. 

The images of composite precipitates were 
simulated by use of a computer program developed in 
Pascal programming language for many beam-image 
simulations employing the above principles of the scat- 
tering matrix approach [12]. In the simulations, five 
systematical beams, namely (i 00)s2, (000)~r, (100)sl, 
(200)F and (300)s3 were considered. If only two beams 
have been used, the (100) superlattice and (000) 
transmitted beams, then the superlattice beam leaving 
the precipitate would not interact with the transmitted 
beam until it reaches the exit side of the foil as if it is 
travelling in a vacuum, and the thickness of the alumi- 
nium layer beneath the precipitate would have no 
effect on the image. However, this does not seem to be 
realistic, because it is obvious that under identical 
conditions, i.e. both in size and position through the 
thickness of the foil, precipitates give rise to brighter 
images in thin sections compared to those in thick 
sections, Fig. 1. 

In the five-beam calculations, Fig. 2, in the matrix 
layer above the precipitate, only two beams, the fun- 
damental (F) and the transmitted (Tr), were employed 

t = _~. (5) 
e 

where ~ = 2rcg.R. Then, the diffracted amplitude will 
be 

~(z )  = S 2 F S  1 ~ ( 0 )  (6) 

Figure 1 TEM images of precipitates, g = (100), s = 0, in the same 
specimen in (a) thin and (b) thick sections. 

where S1 and $2 are the scattering matrices of the per- 
fect crystals above and below the fault, respectively. 

In imperfect crystals with continuously varying 
strain field, the position-dependent defect displace- 
ment vector R causes the reflecting planes to be curved 
with the consequence that the deviation parameter, s, 
varies continuously throughout the crystal. Ordi- 
narily, intensity calculation in such crystals requires 
the column under consideration to be divided into 
thin slices, each with a different s value and therefore 
with a different scattering matrix. Alternative to this 
lengthy calculation procedure, imperfect crystals with 
continuously varying strain fields can be approxim- 
ated as an assemblage of effectively thin slabs of per- 
fect crystal of thickness dz with relative displacements 
rather than rotations between them. Then the ampli- 
tudes of the beams will be 

qb(z) = SmFm-  1Sin- i F , , -  2 "'" SzF1SO~(O) (7) 

where m is the number of the slabs, Sk, k = 1 - m, are 
the scattering matrices of the slabs and Fk are the fault 
matrices constructed according to Equation 5 using 
the strain-originated relative displacements be- 
tween the consecutive slabs. Because slab thickness 
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Figure 2 Schematic representation of the beams used in the image 
calculation scheme. 

4 8 8 4  



Intensity 

Top Top 

i ............. / 

I I I 1 I I I BoRom I I I I i i i i t 
o 

(b) Intensity 

Bo t t om  

(a) 

Figure 3 ( ) The intensity profiles of the superlattice beam, 
g = (100), s = 0 and (--) the transmitted beam in the cored region 
of the composite precipitate through the thickness of the foil using 
(a) two and (b) five systematic beams. 

in calculations because the superlattice reflections 
are forbidden in the aluminium matrix. Reaching 
the composite precipitate, calculations have been ex- 
tended to five beams, namely the fundamental (F), the 
three systematic superlattice (St, $2 and $3) and the 
transmitted (Tr) beams. After leaving the precipitate 
phase, the three superlattiee beams travelling through 
the matrix beneath the precipitate and related to each 
other by the Bragg angle, are expected to interact with 
each other, while the transmitted and the fundamental 
beams leaving the precipitate phase go on to travel as 
a pair without interacting with the superlattice beams. 
Therefore, the calculations were carried out as if two 
independent diffraction phenomena are taking place 
concurrently: one with two beams, Tr and F, and the 
other with three superlattice beams St, $2 and $3. 
Beams in each set are related to each other by the 
Bragg angle and interact with each other only within 
that set. The intensity of the (10 0) superlattice beam 
of the second set at the exit side of the foil was used in 
image construction. Such interaction of superlattice 
beams during their travel in the matrix after leaving 
the precipitate has not been taken into consideration 
in previous image simulation studies. The importance 
of including the interaction between the superlattice 
beams in the matrix beneath the precipitate is evident 
in Fig. 3, which shows the variation of superlattice 
beam intensity as a function of depth through the 
thickness of the foil with a precipitate. While the 
superlattice beam, assumed not to interact with any 
other beam after leaving the precipitate phase, reaches 
the bottom of the foil with constant intensity unaffec- 
ted by foil thickness, Fig. 3a, the superlattice beam 
interacting with other superlattice beams decays in an 
oscillating manner, giving rise to lower intensities as 
the thickness of the foil increases, Fig. 3b. 

3. E v a l u a t i o n  of  t h e  s t ra in  f ie ld  a r o u n d  
s p h e r i c a l  c o m p o s i t e  p r e c i p i t a t e s  

Coherent single precipitates of AI3Zr phase are ex- 
pected to produce coherency strains in the matrix 

while the precipitates themselves are strained uni- 
formly. In case of composite precipitates, the strain 
field must distribute over the shell as well as in the 
matrix and this would contribute to the image. To 
include the effect of the strain in simulating the images 
of composite precipitates, expressions defining the dis- 
placements due to coherency strains both in the 
shell and the matrix are required. This has been 
achieved by a derivation starting from the mechanistic 
approach and then inserting the crystal parameters. 
The displacements in core, Uc, shell, Us, and matrix, 
UM, at radius r in spherical geometry can be given 
as [13] 

r 

Uc = ~-ccPt (Vc - 1) (8a) 

r ~p2bB(2rB-t-a3) pta3(2r 3 + b3). 
u S = E s [  2r3(a 3 - b  3) - 2r3(a 3 - b  3) 

(P2b3(r!--_a a) Pla3(b3-_r3)~ 
- V s \  r3(a 3 _ b 3  ) + r3(a 3 _ b 3  ) ] j  

(8b) 

.M = P2 7x + vM P2 7 (8c) 

where Pt  and P2 are the pressures exerted on the 
boundaries between core and shell, and shell and 
matrix, respectively, a and b are the constrained radius 
of the core and shell and E and v are the elastic 
modulus and the Poisson's ratio of the corresponding 
phases, respectively. The displacement equations 
given above in terms of the elastic properties of the 
phases and the unknown pressures are a direct conse- 
quence of the continuum elasticity theory [-13]. The 
parameters of the phases, i.e. the lattice parameters, 
and the disregistry between the phases, are introduced 
into the above formulation considering the trans- 
formation geometry, Fig. 4. 

Assume that, initially, a sphere of radius rt and a 
hollow sphere of inner radius rt and outer  radius 
r2 are cut and taken out from the matrix, Fig. 4. Then 
allow these elements to transform to their correspond- 
ing phases freely, i.e. inner sphere into A13Zr and the 
hollow sphere into A13Li. After the transformation has 
completed, the radius of the inner sphere will be r b and 
the inner and outer radius of the hollow sphere will be 
rat and raz respectively, due to the volume changes 
during transformation. Let AV~ ~, and AVe_5, be 
the fractional volume changes during transformation 

AI r 1 AI 
I I 

I' 
AlsZr r b j u4 

' I - -  I 
i ul I 

r,, i AI ,L i  r,z I 

U 2 U3 ! 
AI3Zr I AI3Li I 

I I ~ Cons t ra ined  
a b 

r2 
Untransformed 

Trans fo rmed  
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Figure 4 Definition of displacement vectors due to mismatch. 

4 8 8 5  



from aluminium to AI3Zr and aluminium to A13Li, 
respectively, so that 

rb 3 = r3(1 + AV=_ ~,) (9a) 

r3t = r~(1 + AV=_~,) (9b) 

r 3 = r23(1 + AV~_~,) (9c) 

When the transformed elements are then inserted back 
into the hole in the matrix, because of the constraint, 
these elements will readjust their sizes, and the inner 
and outer radius will finally be a and b. The displace- 
ments at the boundaries, as shown in Fig. 4, can be 
represented as, 

ul = a - -  r b = a -- rt(1 + A V a - F )  1/3 (10a) 

u2 = a -- ral = a - r1(1 + AV~,_~,) 1/3 (10b) 

U 3 = b - -  rd2 . =  b -- r2(1 + A V a _ 5 , )  1/3 (10c) 

u4 = b - r2 (10d) 

where ut is the displacement in the inner sphere at 
r -- a, u2 and ua are the displacements in the hollow 
sphere at r = a and r = b, respectively, and u4 is the 
displacement in the infinite media at r = b. Using 
Equation 8, displacements at the boundaries can also 
be written as 

a 

. ,  = - 1 )  (11a) 

a ( 3Pz b3_ P l ( 2 a  3 + b 3) ) 
u2 = Es  \ 2 ( a  3 _ b3 ) 2(a3 _ b 3) + v s P 1  ( l i b )  

b //P2(2b 3 +_a 3) 3Paa a ) 
u3 = Es \ 2(a 3 -- b 3) 2(a 3 - b 3) + vsP2 (l lc)  

b p / / 1  ) 
u 4 = ~  2\~+VM ( l ld)  

Combining Equations 10 and 11, for a given a and b, 
which are experimentally measurable constrained 
radii, four equations with four unknowns are ob- 
tained. These simultaneous equations can be solved 
by elimination and substitution to determine the un- 
knowns P~, P2, r~ and r2. Using the calculated values 
of Pa and Pz, the displacements in the composite 
precipitate shell and the surrounding matrix can be 
evaluated by use of Equation 8. 

Two hypothetical cases were tested to check the 
relevance of the above developed approach. For  this, 
the elastic properties of the phases and the total pre- 
cipitate radius were kept constant. The elastic con- 
stant for all phases was taken as 70 G P a  and the total 
precipitate radius as 50 nm. The core radius was 
changed sequentially from 10 nm to 40 nm by 10 nm 
increments. In the first case, the fractional volume 
changes due to transformation from matrix to core, 
AV~ _ ~,, and from matrix to shell, AV~ _ ~,, phases were 
taken as 0.02 and 0.01, respectively, assuming that 
both core and shell expand due to transformation. In 
the second case, however, the shell was assumed to 
shrink due to transformation by 1%, while the core 
expands by 2% as in the previous case. The radial 
strain distribution curves are shown in Fig. 5. I t  can be 
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Figure 5 Calculated radial strain distribution in the composite 
precipitate geometry, assuming that  the elastic constants of the 
phases are the same. The fractional volume changes due to 
transformation are (a )AV~_~,=0 .02 ,  AV~_~,=0.01 and (b) 
AV~ _~, = 0.02, AVe_ 5, = -- 0.01. The total radius is 50 nm and the 
inner radius from top to bot tom is 10, 20, 30 and 40 nm unit length. 

seen that, as expected, in all cases the strain distribu- 
tion in the core region is uniform. In addition, in the 
first case, where both precipitate phases are expanded 
due to transformation, all the regions are in compres- 
sion. However, in the second case, where the shell 
shrinks due to transformation, the expansion of the 
core is compensated by the shell when the core/total 
radius ratio is small, and the matrix remains in tension 
because the total precipitate is shrinking. However, 
when the core/total radius ratio reaches such a value 
that the volume expansion of the core region could no 
longer be compensated by the shrinkage of the shell, 
the total precipitate expands to set the matrix in 
compression. 

4. Results and discussion 
TEM observations on composite precipitates were 
made on a commercial Al-2.52Li-l .22Cu-0.68 
M g ~ . 1 5 Z r  alloy using a Jeol JEM 100CX electron 
microscope operated at 100 kV. Examples of super- 
lattice dark field, g = (1 00), s = 0, images of com- 
posite precipitates are given in Fig. 6 to be compared 
and contrasted with the image simulation results pre- 
sented below. 

In calculation of the coherency displacement distri- 
bution in composite precipitates, the mismatch be- 
tween the core (A13Zr) and matrix (aluminium), and 
shell (A13Li) and matrix phases were taken to be 1% 
[14] and - 0.08% [15], respectively. The elastic con- 
stants of the aluminium matrix and A13Li shell were 
taken as 66 and 96 G P a  1-16], respectively, and for the 
A13Zr core it was assumed to be 120 GPa.  In super- 
lattice dark-field image simulations, five beams men- 
tioned in the previous section were employed with 
s(1 o o) = 0 and the results are presented as grey scale 



Figure 6 Superlattice dark-field TEM images of composite precipitates, g = (1 0 0), s = 0. Samples were (a) naturally, (b) 200 ~ 1 h, (c) 200 ~ 
2 h, (d) 200 ~ 6 h, (e) 200 ~ 9 h and (f) 230 ~ 3 h aged. 

pictures.  E x t i n c t i o n  a n d  a b s o r p t i o n  d is tances  used in  
the  ca l cu la t ions  are  g iven  in  T a b l e  I. 

The  resul ts  of  i m a g e  s i m u l a t i o n s  of  compos i t e  pre-  
c ipi ta tes  are g iven  in  Fig.  7-a a n d  b w i t h o u t  a n d  wi th  A1, ~ = 711.4nm AI3Li, ~ = 1080rim A13Zr,~=720nm 
c ons ide r i ng  the  effect of  s t r a in  field, respectively.  

Fig.  7a shows the  images  tha t  w o u l d  be  expected if the  h k 1 {g (nm) ~ (nm) ~g (nm) ~ (nm) ~, (nm) ~'g (nlTl) 
c o m p o s i t e  prec ip i ta tes  were n o t  subjec t  to the a n o m -  
aly of a n  u n k n o w n  or igin.  These  comple te ly  b r igh t  100 - - 2155 26937 1589 19860 

200 666 11258 804 10055 502 6281 
images  are  def ini te ly  i n c o n s i s t e n t  wi th  the  experi-  300 - 6285 78560 2806 35075 
m e n t a l  obse rva t ions .  Fig.  7b, wh ich  takes  the  s t ra in  

TABLE I Extinction and absorption distances (rim) of beams 
used in calculations for aluminium, A13Li and A13Zr phases for 
100 kV electrons 

Figure 7 Simulated superlattice dark-field images of a composite precipitate, g = (1 00), s = 0, t = 200 nm, rtota 1 = 15 nm. From left to right 
rcor,/rto,,i ratio is 0.5, 0.7 and 0.9, and from top to bottom, the precipitate is located at 50, 100 and 150 nm from the top of the foil. Strain effects 
are not included in (a) and are included in (b). 
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Figure 8 TEM image of coherent A13Zr precipitates in the 
aluminium matrix enveloped by a very thin shell of A13Li. (a) 
Bright-field image, g=(200), s =0 and (b) weak-beam image, 
s = - 0.025 nm -1. 

effect into account, on the other hand, shows that 
the composite precipitate images should be exten- 
sively modified due to the presence of coherency 
strains at all core/total size ratios and at all depths 
of foil. But the modifications are not in the sense 
and/or extent to justify the experimental images. 
Composite precipitate images such as those given 
in Fig. 7b were never observed experimentally 
under any ageing conditions, Fig. 6, implying that 
coherency strain effects alone could not be respon- 
sible for the image characteristics of the composite 
precipitates. 

The conclusion that the characteristic composite 
precipitate image could not have arisen from the 
strain effects, does not mean that there is no strain 
distribution around these precipitates or that the 
strain does not modify the images at all. It has been  
frequently observed that thin-shelled composite pre- 
cipitates exhibit coherency strain contrast in bright- 
field or weak-beam dark-field T E M  images, Fig. 8. 
Depending on the size of the precipitates and their 
position in the foil, images appear  as two half lobes 
with a line of no contrast or as black and white lobes. 
The image width of the contrast  of the precipitates in 
Fig. 8 seems to be considerably smaller than that 
expected from the 1% AI3Zr/A1 lattice mismatch ob- 
tained by lattice parameter  calculations in a binary 
A1-0.18%Zr alloy [14] and employed in the present 
image calculations. The observed discrepancy in the 
mismatch value may be the result of an operative 
stress-relieving mechanism, such as interfacial misfit 
dislocation generation [1] or looping of matrix dislo- 
cations around the precipitates [17], but such disloca- 
tions were not observed experimentally in the present 
study. Then, there remains the possibility that the 
mismatch between the AlaZr precipitate and the alu- 
minium matrix in the present alloy must have a 
smaller value. This has been tested by matching the 
simulated bright-field and weak-beam dark-field 
images for various mismatch values ranging from 
0 .1%-1%,  Fig. 9, to the experimental precipitate im- 
ages arrowed in Fig. 8. These results indicate that the 
mismatch between A13Zr precipitate and the alumi- 
nium matrix in the present A1-Li-Zr alloy should be 
about  0.3%. For  an A I - I . I % Z r  alloy, Izumi and 
Oelschlagel [18] have reported a mismatch value of 
0.45% based on precipitate image analysis as de- 
scribed by Ashby and Brown [19] and assuming that 
matrix and precipitate elastic constants are equal. 
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Figure 9 Simulated bright-field and weak-beam dark-field images of 
the composite precipitate arrowed in Fig. 8, using systematically 
reduced mismatch values between A13Zr and aluminium, g = (2 00), 
t = 200 nm, rtota 1 = 25.5 nm, r .... = 25 nm and the precipitate 
is located at 100 nm from the top of the foil. (a) Bright-field 
simulations, s = 0. Mismatch values used in the calculations are 
indicated on the micrographs. The scale bar represents the actual 
total precipitate size. (b)Weak-beam dark-filed simulations, 
s = - 0.025 nm- 2 From left to right, the mismatch value is 0.4%, 
0.3% and 0.2%, respectively. 

Simulations done by reducing the elastic constant of 
A13Zr to 66 GPa,  which is equal to the elastic constant 
of the aluminium matrix, has shown that the effect of 
the elastic constant is very weak and the experimental 
image in that case gives best fit to the simulated one 
with 0.35% mismatch. 

To account for the possible error in mismatch 
value, additional superlattice dark-field composite 
precipitate images were simulated using systematically 
varied mismatch values, Fig. 10. It  can be seen that, 
whatever the misfit value is, the calculated images are 
still not in conformance with the experimentally ob- 
served dark c o r e ~ r i g h t  shell images of the composite 
precipitates. 



Figure 10 Simulated superlattice dark-field images of a composite 
precipitate, g = (1 00), s = 0, t = 250 nm, rtota 1 = 405 nm, r ....  = 
18 rim. F rom left to right, the mismatch value is 1%, 0.5%, 0.3% 
and 0.1%, and from top to bottom, the precipitate is located at 50, 
100, 150 and 200 nm  from the top of the foil. 

5. Conclusion 
Many beam dynamical image calculations have 
shown that the anomalous TEM image character- 
istics of composite precipitates in A1-Li-Zr 
alloys cannot be explained by the coherency strain 
field around these precipitates, The mismatch between 
the A13Zr precipitate and aluminium matrix 
in AI-Li-Zr alloys is found to be about 0.3%, which 
is considerably lower than the commonly accepted 
value of 1%. 
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